On the strong rainbow connection of a graph∗

نویسندگان

  • Xueliang Li
  • Yuefang Sun
چکیده

A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. For any two vertices u and v of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where d(u, v) is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow u − v geodesic for any two vertices u and v in G. The strong rainbow connection number of G, denoted by src(G), is the minimum number of colors that are needed in order to make G strongly rainbow connected. In this paper, we first give a sharp upper bound for src(G) in terms of the number of edge-disjoint triangles in a graph G, and give a necessary and sufficient condition for the equality. We next investigate the graphs with large strong rainbow connection numbers. Chartrand et al. obtained that src(G) = m if and only if G is a tree, we will show that src(G) 6= m− 1, and characterize the graphs G with src(G) = m − 2 where m is the number of edges of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the rainbow connection of Cartesian products and their subgraphs

Rainbow connection number of Cartesian products and their subgraphs are considered. Previously known bounds are compared and non-existence of such bounds for subgraphs of products are discussed. It is shown that the rainbow connection number of an isometric subgraph of a hypercube is bounded above by the rainbow connection number of the hypercube. Isometric subgraphs of hypercubes with the rain...

متن کامل

Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...

متن کامل

On various (strong) rainbow connection numbers of graphs

An edge-coloured path is rainbow if all of its edges have distinct colours. For a connected graph G, the rainbow connection number rc(G) of G is the minimum number of colours in an edge-colouring of G such that, any two vertices are connected by a rainbow path. Similarly, the strong rainbow connection number src(G) ofG is the minimum number of colours in an edge-colouring of G such that, any tw...

متن کامل

S N 2 23 2 - 20 94 , n o . 1 14 9 , M ay 1 7 , 2 01 1

A path in an edge colored graph G is called a rainbow path if all its edges have pairwise different colors. Then G is rainbow connected if there exists a rainbow path between every pair of vertices of G and the least number of colors needed to obtain a rainbow connected graph is the rainbow connection number. If we demand that there must exist a shortest rainbow path between every pair of verti...

متن کامل

The (strong) rainbow connection numbers of Cayley graphs on Abelian groups

A path in an edge-colored graph G, where adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. The strong rainbow connection number src(G) of G is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011